

Compliance to MES: Progress, postponements and technology options.

Portfolio Committee on Environmental Affairs' Workshop on the Minimum Emission Standards.

Date: 06 February 2018

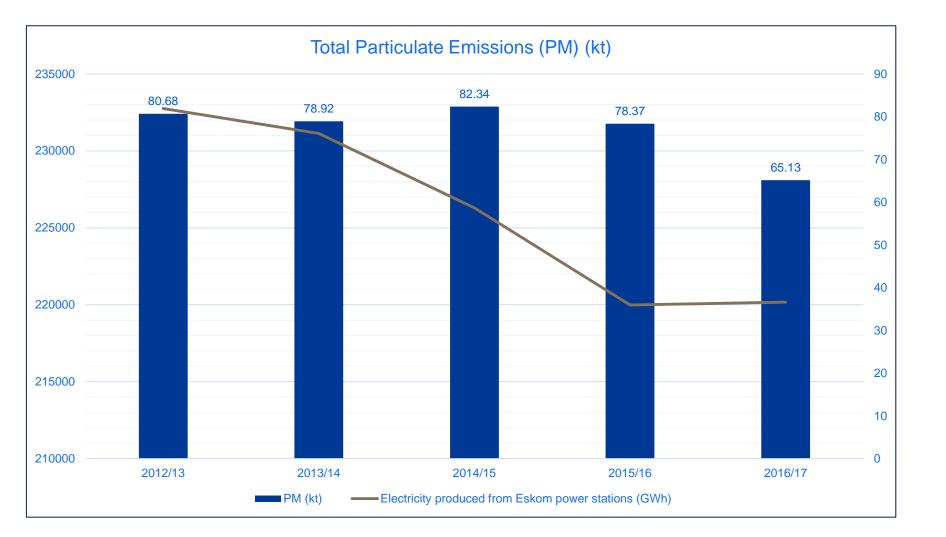
Executive overview

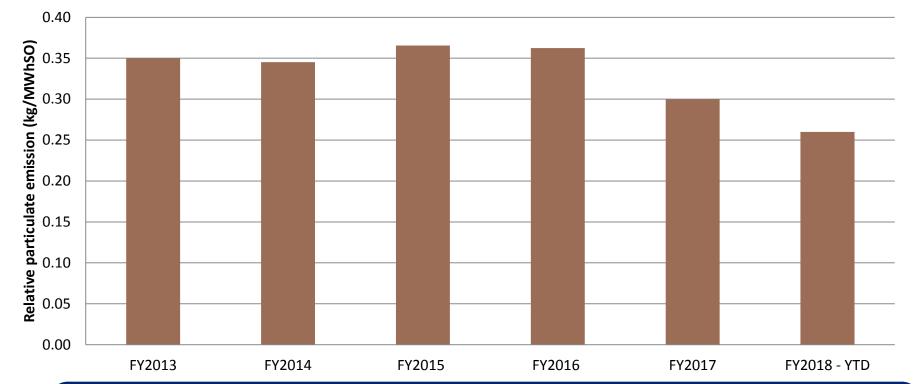
- Eskom supports the Minimum Emission Standards as they are needed to reduce harmful health effects of air pollution and provide certainty for planning.
- Eskom has made progress with its "power plant compliance status" but there are some delays being experienced in project execution
- Eskom has made progress with the Air Quality offset programme
- Eskom's ambient air quality monitoring network shows that there is generally compliance with ambient SO₂ and NOx standards, but non-compliance with PM10 and PM2.5 standards on the Mpumalanga Highveld.
- There continues to be a challenge for existing plants to meet the new plant standards within the required timelines due to high cost, water use and impact on the electricity tariff.
- Eskom has initiated the process of applying for new postponements for the next 5 year period. The detail of what postponements will be requested will be available once Eskom has completed a thorough review. Public meetings for Tutuka power station postponement began in January 2018. For four coal fired power stations, no postponements are expected to be applied for.

Current Status of Eskom's Air Quality Compliance Plan

Eskom's Air Quality Offsets Project

Alternative Technologies to Reduce Sulphur dioxide


Conclusions

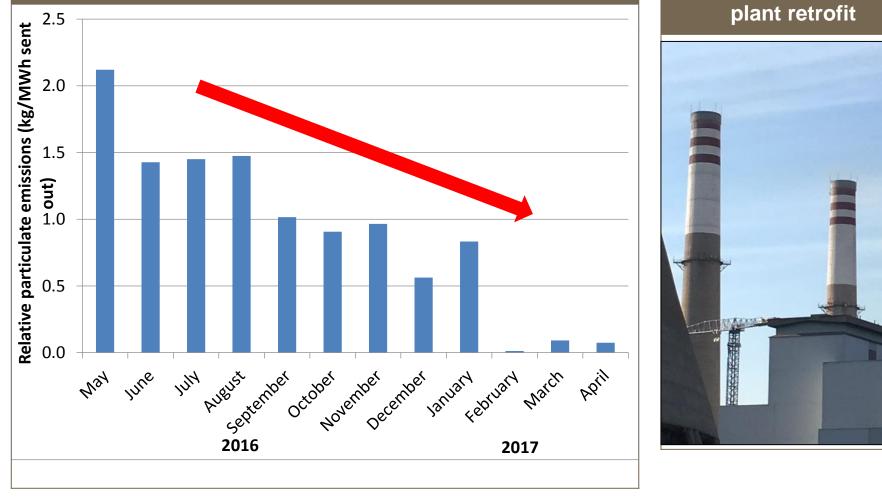

Emission and Ambient Air Quality Trends

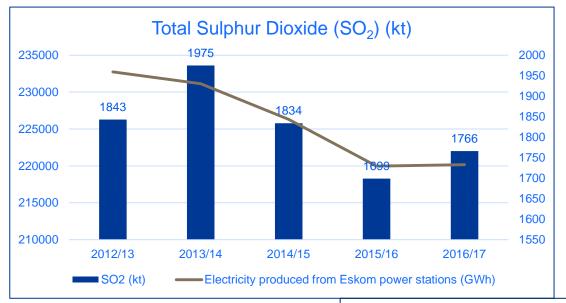
Yearly (financial year) total tonnages from Eskom: 2012/13 – 2016/7

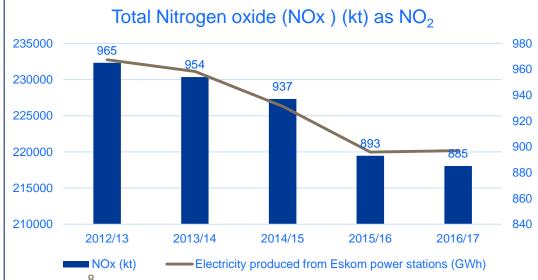
The Eskom roadmap travelled to-date to reduce relative yearly particulate emissions (2012/13 to 2017/18)

(Eskom

High load factors coupled with plant availability challenges at a number of stations led to the sustained high emissions between FY2013 to FY2016. The reduced system demand from FY2017 provided for maintenance opportunity to undertake essential repairs at a number of units. This coupled with the start of the retrofit of Grootvlei units 2 to 4 to FFPs plus the completion of refurbishment of the ESP on 4 of the 6 units at Matla resulted in an improving trend.


Monthly emission trends (May 2016 to April 2017): Grootvlei fabric filter plant retrofit


Clean stacks after


Grootvlei fabric filter

More than 10-fold reduction in relative particulate emissions from Grootvlei Power Station due to fabric filter

Yearly total gaseous emissions from Eskom: 2012/13 – 2016/17

Eskom

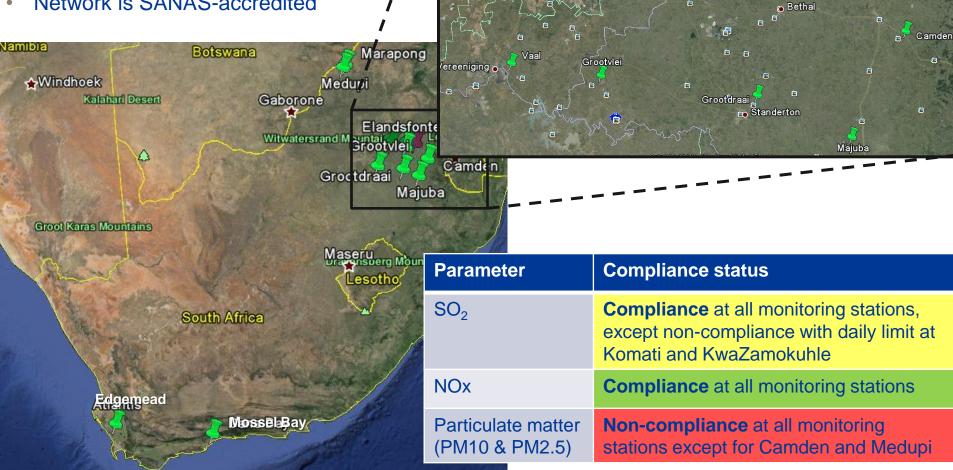
7 February 2018

Ambient Air Quality

Eskom's ambient air quality monitoring network

wazamokuhle

Emalahleni


Elandsfontein-

Kendal 2

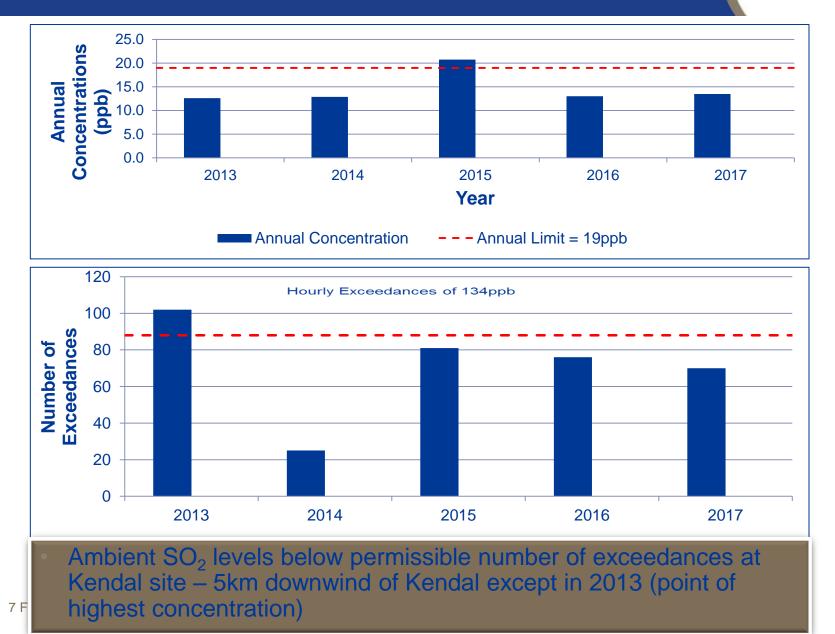
Komati

- Operated by Eskom's ambient air • quality monitoring team in RT&D (except for Edgemead and Mossel Bay)
- Network is SANAS-accredited

etoria ⁄ 🔁 🖉

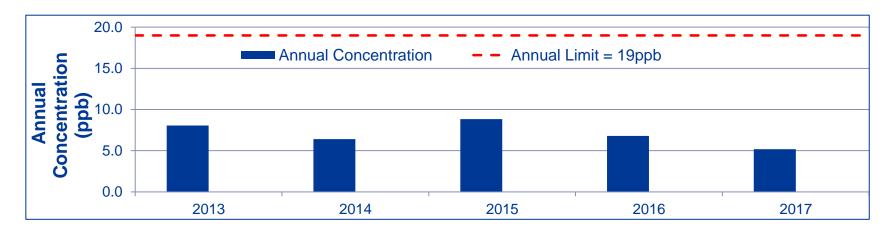
12

Gauteng

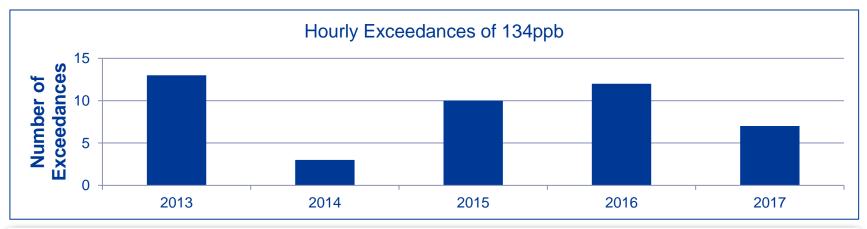

Springs

ohannesburg 🖝

Soweto

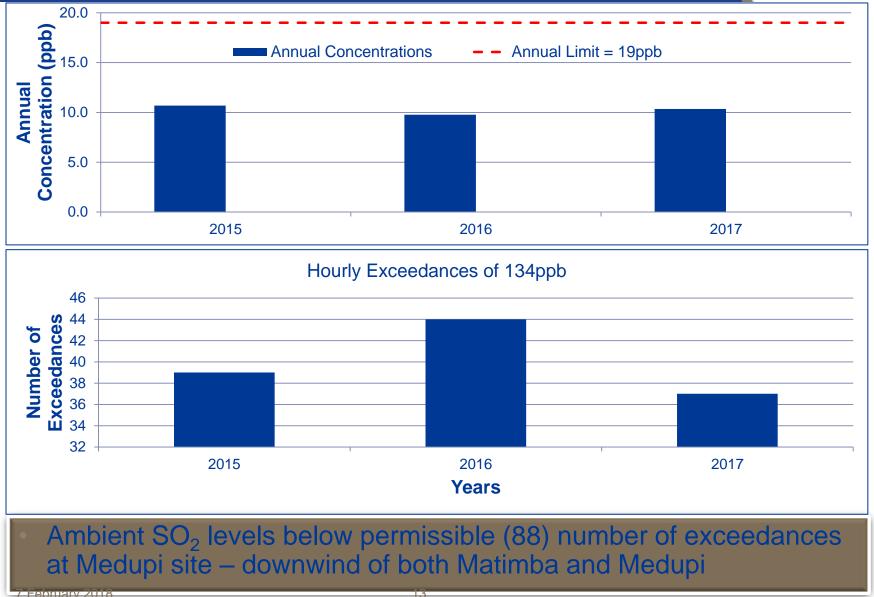

Kendal Poultry Farm

Five year ambient air quality trends of Sulphur dioxide – Kendal Ambient Monitoring Station



(Eskom

Five year ambient air quality trends of Sulphur dioxide – Marapong Ambient Monitoring Station



(Eskom

Ambient SO₂ levels below permissible (88) number of exceedances at Marapong – township upwind of both Matimba and Medupi

Three year ambient air quality trends of Sulphur dioxide – Medupi Ambient Monitoring Station

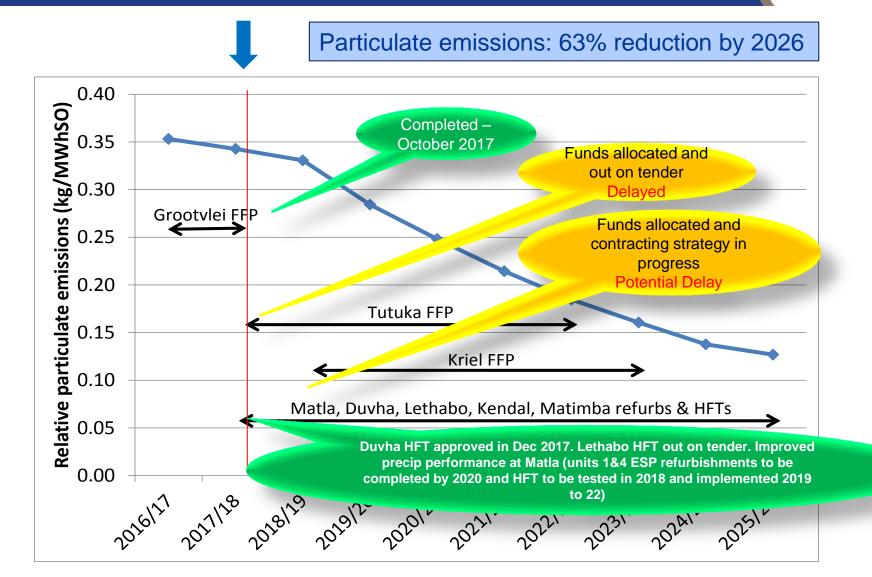
Current Status of Eskom's Air Quality Compliance Plan

Summary of Eskom's Air Quality Improvement plan - roadmap towards compliance

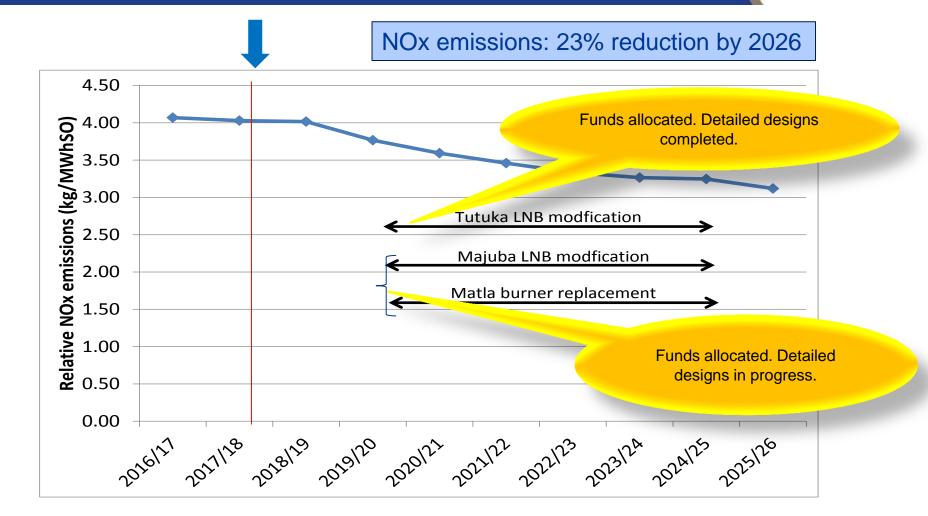
								,	Years								1	nissioning ites
	Retrofits	15/16	16/17	17/18	18/19	19/20	20/21	21/22	22/23	23/24	24/25	25/26	26/27	27/28	28/29	29/30	50-year life	60-year life
Medupi	FGD																2064-	2074-
Majuba	LNB																2046-2051	2056-2061
Kendal	HFT						,										2038-2043	2048-2053
Matimba	HFT						,										2037-2041	2047-2051
Lethabo	HFT																2035-2040	2045-2050
Tutuka	FFP																2035-2040	2045-2050
Тицика	LNB																2035-2040	2040-2000
Duvha	HFT (U4-6)																2030-2034	2040-2044
	HFT				'											D		
Matla	LNB	/		1												D	2029-2033	2039-2043
Kriel	FFP												D	D	D	D	2026-2029	2036-2039
Arnot	None							D	D	D	D	D	D	D	D	D	2021-2029	2031-2035
Hendrina	None						D	D	D	D	D	D	D				2020-2026	2030-2036
Camden	None							D	D	D							2020-2023	
Grootvlei	FFP (U2-4)						Com	pleted				D	D	D	D		2025-2028	
Komati	None										D	D	D	D	D		2024-2028	

Eskom

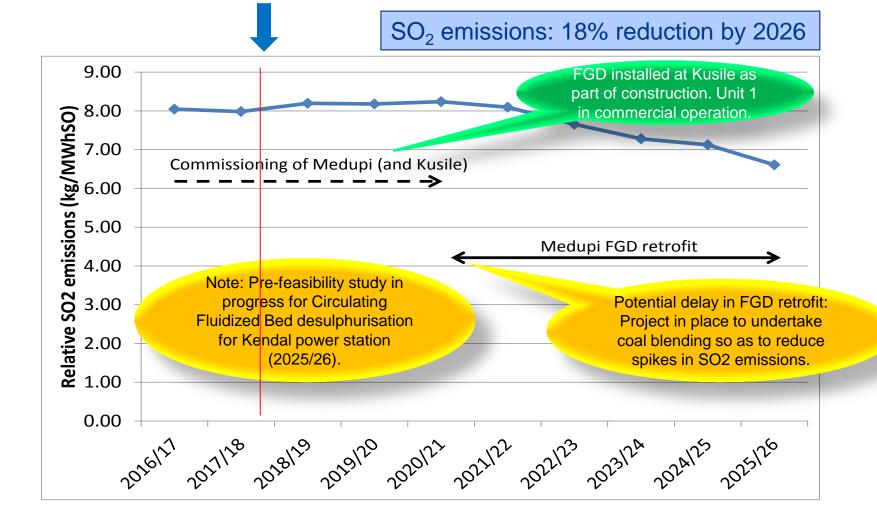
Flu Lo Fa


Flue gas desulphurisation (FGD) retrofit

Low NO_x Burner (LNB) retrofits


Fabric Filter Plant (FFP) retrofits or high frequency transformer (HFT) installations

Decommissioning dates: 50 year life and current plan for RTS


Eskom's emission reductions roadmap towards compliance – Particulate Emissions (PM)

Eskom's emission reductions roadmap towards compliance – Nitrogen Oxides (NOx)

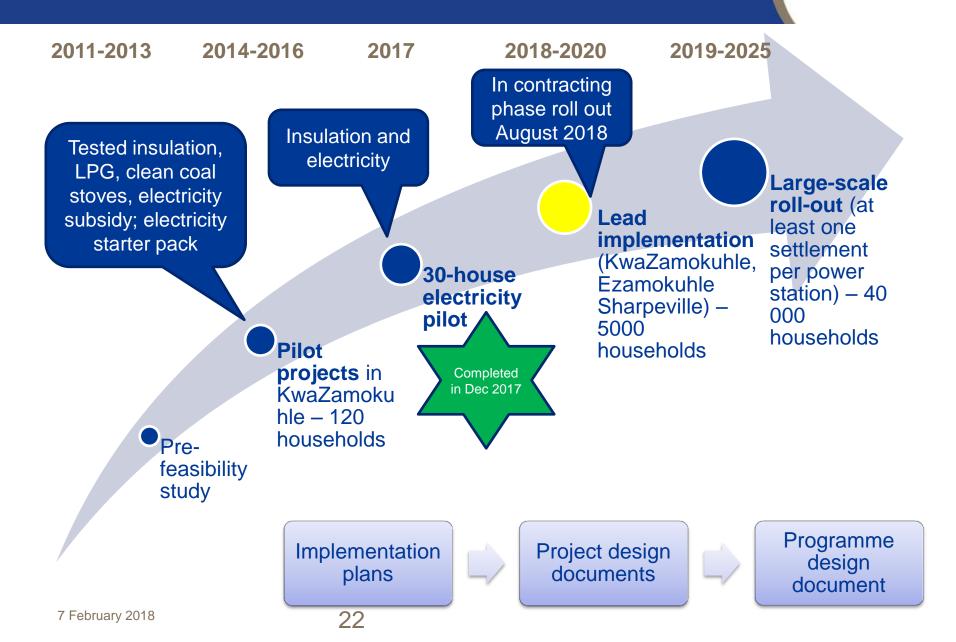
Eskom's emission reductions roadmap towards compliance – Sulphur Dioxide (SO₂)

Eskom's Air Quality Offset Programme

What can be achieved through offsets?

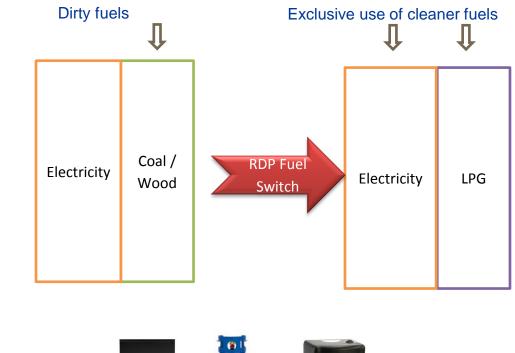
What will Eskom be doing for the offsets?

Programme of activities:


emission reduction (Nkangala, Gert Sibande)

emission reduction (Vaal)

and awareness


be considered for household application

Eskom's air quality offsets journey

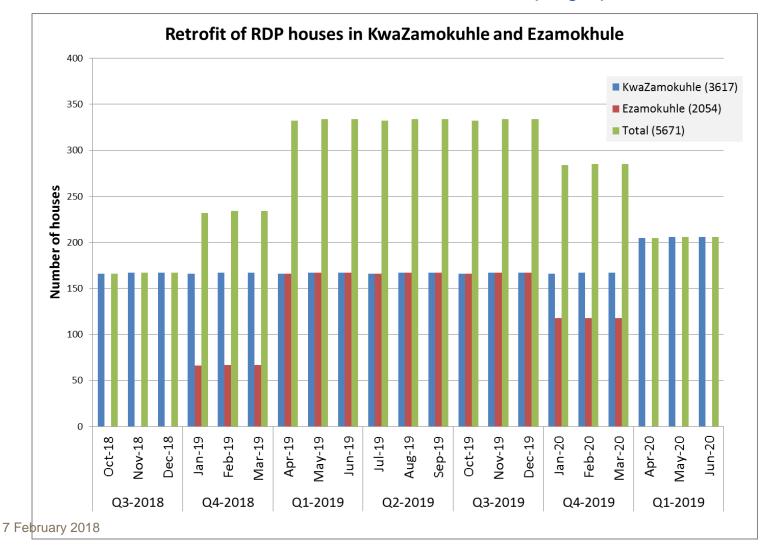
Key findings from the electricity pilot study

- Houses already have electricity but don't use it due to perceived high cost to cook and heat with and cultural preferences.
- It is feasible to switch household from coal to electricity but there is a high risk of reverting back to coal due to cultural norms, electricity cost, electricity supply cuts, ability to heat houses in winter.
- Hybrid of electricity and gas is proposed: Gas/elec plates, electric..

Changes to AQO plans (interventions)

Eskom

- Intervention for RDP houses (as per initial plan)
 - Insulation: Full retrofit (ceilings plus walls)
 - Fuel switching: Switch households to LPG (swop coal stove for LPG stove and heater).
- Proposed intervention for RDP houses (current plan)
 - Insulation: Basic retrofit (ceilings only)
 - Fuel switching: Switch households to electricity plus LPG backup (swop coal stove for hybrid gas electric).



7 February 2018

Lead implementation rollout starting in October 2018: Number of houses

Estimated rollout schedule – 166 houses/month ramping up to 334 houses/month

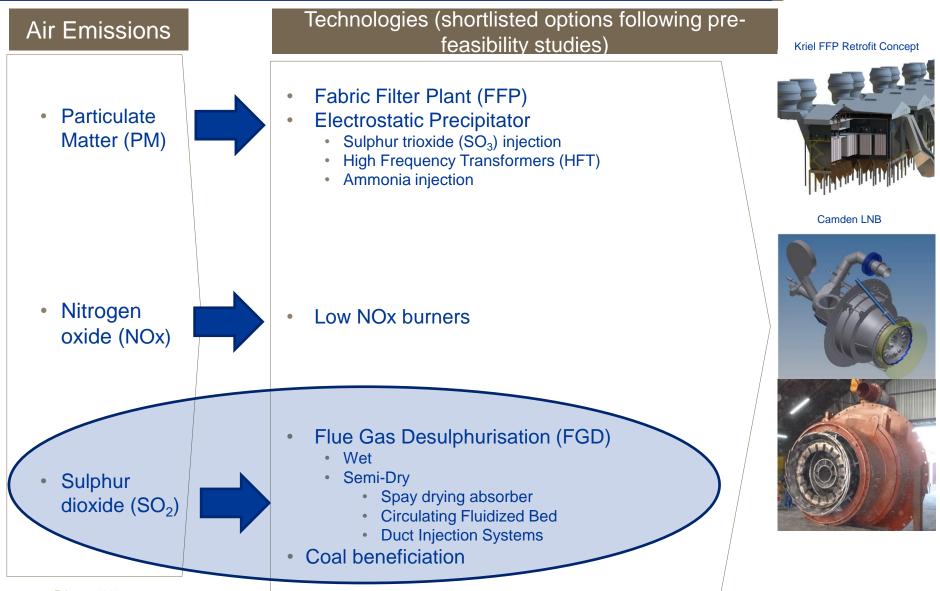
(Eskom

The offset interventions will be rolled out at least one settlement per power station (of which there are 12), commencing with the baseline determination and planning in 2018, and implementation in 2019/20. (overlapping with the lead implementation)

			-	Juit	, icuu	·P	i e i i e i i	cacion																
	Start of baseline and monitoring																							
							Start o	of large-so	ale roll-o	ut									Subr	nit	202	5 pos	stpor	nem
							Su	bmit 2020	postpon	emen	t app	olicatio	n						a	pp	licat	ion		
Licencing	Power	FY2017	FY2	018	FY	201		FY2020	FY20	21	F	Y2022		FY2	2023		F	Y2024		F	Y20	25	FY2	026-
Authority	Station	Q1 Q2 Q3	Q4 Q1 Q2	Q3 Q4	Q1 Q	2 Q3	Q4 Q1		4 Q1 Q2 Q	3Q4	Q1	Q2 Q3	Q4 Q	1 Q2	Q3	Q4 (Q1 (Q2 Q3	Q4	21	Q2 (23 Q4	4	
	Hendrina			KwaZa																				
	Arnot					Τ	Solibe	ela + Carop	ark															
	Komati						Neigh	bouring s	ettlemen	s + V	andy	ksdrif	/Retl	nabil	e									
Nkangala	Matla						Betha	l (Emzino	ni) + farm	s														
	Kriel						Thubelihle + Rietspruit + Kinross/Thistlegrove + farms																	
	Duvha						Masak	khane Vill	age + farn	ıs + e	Mala	hleni												
	Kendal						Phola	+ e Malah	eni															
	Tutuka			Ezamo	kuhle		Thutu	<mark>kani + f</mark> arı	ns															
Gert	Majuba						Dagga	kraal/Sind	qobile + E	zamo	kuhl	e + far	ns											
Sibande	Grootvle	i					Groot	vlei waste	+ Grootv	lei + N	Itho	rwane	+ farı	ns										
	Camden						Sheep	omoor + fa	rms + Ern	nelo														
Fezile Dab	Lethabo			Waste	pil	/aste	in Sed	libeng + h	ousehold	inter	vent	ions in	Refe	ngko	otso,	Ma	mel	lo, M	etsin	nah	olo			

Baseline - AQ monitoring and community engagement

Lead implementation


Large-scale implementation

Alternative Technologies to Reduce Sulphur dioxide

Options to Reduce Air Emissions from Eskom's Power Stations

7 February 2018

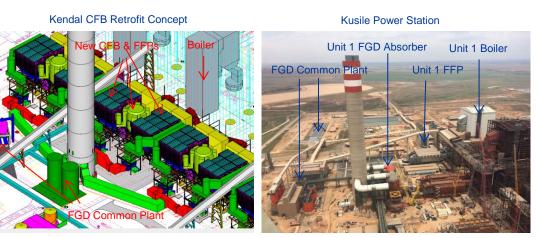
28

Sulphur dioxide (SO₂) technology options considered: advantages and disadvantages

SO₂ abatement	Advantages	Disadvantages
Wet FGD	 >98% removal efficiency Can achieve SO₂ emissions to below 500 mg/Nm³ Lower sorbent costs (limestone) Waste – saleable gypsum potential 	 Additional water use of 0.21l/kWh Increased operational cost + 30-40% Special materials of construction lining to prevent corrosion 1.2 - 1.5% Increase in power consumption Large footprint needed for installation
Semi-dry FGD: Spray Drying Absorber	 >90% removal efficiency Could achieve SO₂ emissions to below 500 mg/Nm³ Lower power consumption (0.5% increase) No waste water produced The product produced is dry. Can be recycled to improve sorbent utilisation 	 Additional water use of 0.14 l/kWh, but lower than wet FGD Higher sorbent costs (hydrated lime, calcium oxide) Multiple absorbers required for large plant Increased operational cost + 35-45%
Semi-dry FGD: Circulating Fluidized Bed	 >95% removal efficiency Can achieve SO₂ emissions to below 500 mg/Nm³ Lime fed can be adjusted to match fuel Injected water does not need to be high quality Lower capital costs Visible (steam) plumes are avoided No waster water produced 	 Additional water use of 0.14 l/kWh, but lower than wet FGD Higher sorbent costs (hydrated lime, calcium oxide) Increased operational cost + 35-45% Higher particulate matter concentrations 0.5 - 1.0% increase in power consumption Space needed for its installation
Semi-dry FGD – Duct Injection System	 No additional water use Lower power consumption (0.5% increase) Small footprint for installation 	 30-60% removal efficiency Reduce SO₂ level <3500mg/Nm³ but not to below 500 mg/Nm³ Higher sorbent costs (lime, sodium based) Increased operational cost + 100%. Costs increase exponentially for higher removal efficiencies Not demonstrated for large boiler units such as those used in Eskom 0.5 – 1.0% increase in power consumption
Coal beneficiation	Low cost	 Sulphur is organically bound – cannot be reduced by washing Increased water consumption and waste

Sulphur dioxide (SO₂) technology options considered: advantages and disadvantages

SO ₂ abatement	Advantages	Disadvantages
Wet FGD	 >98% rem Can achie Lower sor Waste – saleable gypsum potential 	 & retrofit for Medupi orrosion 1.2 – 1.5% Increase in power consumption Large footprint needed for installation
Semi-dry FGD: Spray Drying Absorber	 >90% removal efficiency Could achieve SO₂ emissions to below 500 mg/Nm³ Lower power consumption (0.5% increase) No waste water produced The product produced is dry. Can be recycled to improve sorbent utilisation 	 Additional water use of 0.14 l/kWh, but lower than wet FGD Higher sorbent costs (hydrated lime, calcium oxide) Multiple absorbers required for large plant Increased operational cost + 35-45%
Semi-dry FGD: Circulating Fluidized Bed	 >95% removal efficiency. Can achie Lime fed control of the fed contro	 Additional water use of 0.14 l/kWh, but lower than wet pre-feasibility study Increased operational cost 1.00 40 % Higher particulate matter concentrations 0.5 – 1.0% increase in power consumption Space needed for its installation
Semi-dry FGD – Duct Injection System	 No additional water use Lower power consumption (0.5% increase) Small footprint for installation 	 30-60% removal efficiency Reduce SO₂ level <3500mg/Nm³ but not to below 500 mg/Nm³ Higher sorbent costs (lime, sodium based) Increased operational cost + 100%. Costs increase exponentially for higher removal efficiencies Not demonstrated for large boiler units such as those used in Eskom 0.5 - 1.0% increase in power consumption
Coal beneficiation	Low cost	 Sulphur is organically bound – cannot be reduced by washing Increased water consumption and waste


Key Outcomes for Desulphurization

- Each System has it's own complexities, is site dependent and there isn't a one size fits all approach.
- For compliance to the 500 mg/Nm³ SO₂ limit, the Wet-LFO FGD, Semi-dry SDA or Semi-dry CFB options are being considered.
- The wet FGD is being installed at Kusile and being commissioned with the start-up of each unit.
- The Medupi FGD-ready concept and plant layout was based on a wet-FGD system based on the outcomes of a techno-economic life cycle study. Currently detailed designs are in progress.
- Due to the complexity associated with a retrofit scenario, the Kendal concept is also investigating the semidry options. A CFD pilot plant is being considered to demonstrate applicability in the local context also focusing on skills development and resources utilization potential.

Tentative Key Milestones:

FY 2022: Pilot Plant Commission FY 2023/24: Test Campaign FY 2024/25: CFB Retrofit Concept Design FY 2026: CFB Retrofit Bossiness Case and Approval FY 2027: CFB Detailed Designs FY 2028-30: Procurement and Site Establishment: FY 2031-37: Construction & Commissioning (1 unit/year)

 There are emerging multi-pollutant control technologies that could be considered. However, they have not reached commercial maturity at scale and thus need the to be piloted before full-scale considerations can be made.

Conclusion

Eskom Holdings SOC Limited

Concluding remarks

Power Plant status to compliance

- There has been progress toward meeting the MES for particulates and NOx. There are potential delays for the first units but efforts will be made to ensure the last units are not delayed.
- The offset programme roll out to households will start in October 2018.
- Medupi FGD is delayed, efforts are being made to reduce the delay period and to avoid delays with the later units.
- Postponement applications have been initiated for the next five year period however the detail of these is not yet available it is currently under review and will need to be approved internal to Eskom prior to finalising the application.
- Eskom has evaluated the technology options available to reduce Sulphur dioxide
 - There are emerging multi-pollutant control technologies that could be considered once they commercial maturity at scale,
 - Eskom will pilot technologies which show promise of being better options compared with FGD.

Conclusions continued

- Meeting the MES for Sulphur dioxide presents socio-economic challenges. The current air quality programme will add 3% to the tariff.
- Alternative mechanisms are required to address the challenge faced for existing plants (especially those 25 years and older) to comply with new plant standards specifically with regard to Sulphur dioxide.
 - Given that there are no immediate technical solutions to replace Flue Gas Desulphurisation, and
 - According to Prof Gerrit Cornelius at the November 2017 Parliamentary Colloquium FGD shows negative cost benefit from a socio-economic perspective.