Enabling Sustainable Human Settlements

Presentation to the Portfolio Committee on Human Settlements

16 April 2013 Presented by : Dr Cornelius Ruiters Executive Director : Built Environment

Layout of the Presentation

URBAN/RURAL DESIGN AND PLANNING

Urban & rural spatial dynamics: Challenges and lessons learned

Population dynamics and the movement of people

ALTERNATIVE BUILDING TECHNOLOGY

Unit cost of the alternative technology/(Low cost housing demonstration model)

CSIR low cost housing model vs standard RDP housing model - Costing

Findings on the contributions of an alternative technology

ALTERNATIVE TECHNOLOGIES FOR WATER AND SANITATION

Water value chain (includes sanitation)

CSIR's water and wastewater technologies

CONCLUSIONS

Designing sustainable human settlements

Current initiatives focus on a range of areas related to integrated planning and design aimed at creating wellfunctioning, sustainable settlements

Housing options and urban development (medium-density mixed housing, social housing)

Appropriate technologies, (particularly sanitation), focusing on user acceptability issues and decision-making processes

The relationship between crime and the physical environment, and the role of planning, design and management in creating safer communities

Examples of support: Guidelines for Human Settlement Planning and Design (the Red Book)

Human settlements are more than just housing

Guidelines for provision of social facilities in a range of SA settlements has been published and should be applied to new township approval and used to support capital budget requests to retro existing settlements.

Accessibility analysis can be used to test sufficiency and accessibility of facilities in settlements.

➢ DPSA project highlighted large backlogs in 2 of our biggest metros. Capital and manpower requirements are huge including basic education and health sectors. Thus alternative building technologies ie for schools as tested by CSIR are appropriate. Also critical need to increase the recruitment and/ or training opportunities for key professionals.

Publication

Forward planning – providing an equitable basis for allocation of scarce land and capital resources together with location guidelines

Land use management – provide guidance on the number of facilities required, & scale and site requirements

Plan implementation –a yardstick to measure sufficiency of facilities on a broad scale

➢ Improving quality of life – ensuring that a full range of facilities and open spaces is accessible to all.

GUIDELINES FOR THE PROVISION OF SOCIAL FACILITIES IN SOUTH AFRICAN SETTLEMENTS First Edition: August 2012

Integrated facility plan to meet extensive backlog of facilities

The Government Programme of Action (Outcome 12) requires government departments to develop geographic access norms and to set targets for reducing the distances people have to travel to reach services, where this is appropriate.

Human settlements play a critical role in realising South Africa's development vision

According to recent spatial dynamics research conducted by CSIR (using the unique Geospatial Analyses Platform and innovative spatial analyses tools), it is estimated that even though the network of city regions, cities and towns in South Africa covers only 6.7% of the land area, these areas house more than 77% (three quarters) of the population and acts as the economic and job creation engines of the country - generating 86% of total economic activity.

In addition to the 'formal' towns and cities, large and growing dense rural settlements in traditional rural districts are now estimated to house 12% of the national population.

For close to 90% of South Africa's population, their quality of life, and access to services and economic opportunities are thus dependent on the quality and sustainability of the country's human settlement

In recent studies conducted by CSIR, BE in collaboration with DRDLR (Rural Infrastructure) and Meraka (CSIR) the unique development dynamics and challenges and changes across South Africa's settlement landscape clearly points to:

- The important role that regional towns and service centres (estimated to house 20% of the national population) play in providing access to government services and economic opportunities and the investment priorities related thereto.
- The tremendous amount of settlement related change that occurred in high density and growing settlements in rural districts (housing more than 6million/12% of the national population). Given the unique contexts of typography, limited agriculture activities, being largely located on tribal land and often in areas with limited access to higher order government facilities and economic opportunities, these areas are faced with unique challenges in terms of sustainability of governance, service delivery and livelihoods.

In this context, CSIR's unique spatial analyses platforms and capabilities, including i.e. change detection technologies, innovative migration analyses and recent investment in regional land use modelling assist diversified governance and prioritisation of investment. Dense rural settlements and accessibility to higher order economic and government services

Legend

/ Main Roads

Main Cities

Provincial Boundaries

MODIS (remote sensing) Settlement related change detection 23 Priority Rural Districts (2001-2012): Example

Sustainable Human Settlements: Investment Potential Atlas 2009

Aim:

OSpatial interpretation of current policy,

•Relates to establishment of sustainable human settlements ; settlement locality

Objective:

Guide housing / settlement investment decisions by various stakeholders
ofrom dysfunctional space economy to integrated, sustainable settlements

>Method:

Outcomes of multi-disciplinary research and specialist technical competencies / platforms,

OApplied to address investment locality decisions,

OPackaged in useable format to support decisions making

Use & Impact:

OContribute to distribution of national housing fund (since 2005),

ONew edition (2009): input into allocation formula,

OUses an integrated investment framework,

OMore direct use by lower sphere decision makers,

 Includes a housing response typology with detailed density, dwelling type delivery models and level of formality,

OQuantitative index for Quality of Place and Quality of Life

Delivery mechanisms of Human Settlements Atlas

Glossy A3 Atlas with full page maps, easily navigation with explanations

Complemented by electronic map viewer product for desktop use

Distributed to; DoHA, PCAS, Metro's, Provinces, HDA, Habitat for humanity, UN library, HSRC, GCRO and DBSA.

Envisaged Human settlements Atlas 2013/2014 ??

Last version 2009

New census 2011 data now available

All platforms (including GAP) have been updated to reflect a new 2011 picture

More data input due to current household surveys conducted

Greater environmental analysis needed- climate change impact, community risk and vulnerability

Migration proxy development and analysis

- Through StepSA Initiative (living labs) a need for added migration data was identified to support regional analysis and planning
- **Independent Electoral Data** from IEC was identified as a possible and very usable data source
- IEC was approached and anonomised voter registration data obtained for 1999, 2000, 2004, 2006, 2009 and 2011
- Due to **spatial unit difference of voter districts** a process was applied to standardise the data to a single period in order to then trace the movement of people over different time periods
- CSIR (Johan Maritz) and HSRC (Pieter Kok) processed the data spatially to create data at voting district level indicating the following:
 - Movement between different election periods
 - Data described age and gender movements spatially
 - Data could be aggregated to Local and District Municipalities to map major movement trends
- Information was mapped and placed on the **StepSA portal** (http://stepsa.org)
- Data also compared with earlier Census data findings remain constant and confirmed the validity of the IEC data for migration analyses
- Contributes significantly to **understanding population** Slimovement in time and spatially within South Africa

Examples of spatial migration data using IEC data:

IEC Data comparison 1999 - 2004 LM: From LM.

Lessons from Innovative Housing Project

Slide 15

Challenge 1: Poor urban design & planning

Poor orientation

Poor use of infrastructure resources (roads, services)

No supporting social infrastructure

Slide 16

© CSIR 2006

www.csir.co.za

Poor urban design & planning

No variation in house design No variation in types (single, semi-detached, row houses) Poorly integrated into existing communities

Slide 17

© CSIR 2006

Urban design & planning

Mix of housing types

Correct orientation

Integrates into existing community

Slide 18

© CSIR 2006

Challenge 2: One-size-fits-all (No)

Only 1 house design (house plan and type) Difficult to expand

www.csir.co.za

Variations on a theme

CSIR/DST House

Slide 20

Mdantsane, Buffola City

our future through science

Mthimkulu Village, Kleinmond

More than 1 house plan (match beneficiary needs) Mix housing types

Kleinmond

Semi-detached

www.csir.co.za

Challenge 3: Poor construction quality

Poor building skills

Poor supervision

Treating masonry block like a brick

Slide 24

© CSIR 2006

Good building quality

Local training in block laying

Modular use of block (material mass reduction 33%)

© CSIR 2006

www.csir.co.za

Challenge 4: Poor technical documentation

Poor design (location on site, ease of expandability) Ignores block dimensions wastes material

Design & technical documentation skill

Complete design and construction documentation All technical details included

All construction problems worked out beforehand

Slide 27

© CSIR 2006

Challenge 5: Inadequate service design and provision

Poor service design wasteful of piping Inadequate or no service provision

Slide 28

© CSIR 2006

www.csir.co.za

Service design & provision

Comprehensive service design (material reduction 26%)

Service design and provision

Off-grid electricity for lighting and cellphone charging Solar water heating Rain water harvesting (22,000l for free)

Slide 30

© CSIR 2006

Challenge 6: Alternative building technology (ABT)

Agrément SA certified systems

Generally performs better than standard brick house (SBH)

© CSIR 2006

www.csir.co.za

IDT Alternative Building Technology Study

Savings of up to 53% versus conventional school building DHS is not exploiting available technology Caution: not without its own challenges (performance, logistics, thermal comfort) © CSIR 2006 www.csir.co.za

Slide 32

Light frame steel

Insulated panel system

Imison System

Insulation panels with high strength reinforced mortar coat

Slide 34

© CSIR 2006

Danish precast concrete technology

Structurally insulated panels (high strength concrete) Walls and roof

www.csir.co.za

Kleinmond costing per house

Item	Cost
Standard subsidy top structure (inc. geotech and SCCCA)	R75,000
Tiled roof, wooden trusses, insulated ceiling	10,255
Reinforced ring beam	928
Blocks for gable	600
Steel additional	304
Sit-bath	613
Fire-proof party wall	1,300
ABT services (PVP, SWH, RWT)	25,084

Findings of what technology can contribute

Innovative technology	Per house	National
Energy reduction (heating cooling)	11.12 GJ	23.3 million GJ
CO ₂ reduction	0.885 ton	1.94 million ton
Material weight reduction	18.8 ton	39.4 million ton
Water from materials	19.73 m3	41.4 million m ³
Water, through tanks	22 m3	46.2 million m ³
Electricity (SWH)	1762.95 kWh/annum	3.7 billion kWh/annum
Electricity (PV)	36 kWh/annum	75.6 million kWh/annum
CO ₂ reduction (SWH)	2.11 ton/kWh/annum	4.4 million t/kWh/annum
CO ₂ reduction (PV)	0.04 ton/kWh/annum	90 300 ton/kWh/annum

Decent sustainable human settlements

Must do things differently by understanding that housing delivery is a R12b property development

Bokaap

Variations on a theme

Water Value Chain in South Africa

Both urban and rural sanitation are components of the water value chain

www.csir.co.za

Technological option for treating potable water at household level in rural areas

our future through science

The SanTech Centre

Background

➢First open-air exhibition centre for on-site sanitation technologies in Africa, located at the CSIR, Pretoria

Officially opened on 27 May 2011 - jointly funded by the CSIR and the Water Research Commission

Purpose

➤To display full-scale, albeit non-working examples of some on-site technologies and products available in South Africa

It allows visitors to acquaint themselves with sanitation systems to assist with decisions regarding appropriate options

Exhibits

➤A comprehensive range of sanitation technologies and products, including conventional and alternative approaches (dry sanitation, urine diversion and/or separation technologies, water-borne systems and ecological sanitation)

Examples provided by commercial suppliers, as well as exhibits constructed by the CSIR

➤ The products and technologies exhibited are not endorsed or promoted by the CSIR, Slide 44 and exhibits are not being tested on this site

The wastewater treatment technology – ERWAT Plant as a pilot

CSIRs patented AD

- This is an automated two-stage continuous flow anaerobic digester facilitated by three hopper tanks.
- 1st stage Control of the loading rate, temperature, mixing and pH
- 2nd stage Stratification/settling of the stabilised sludge

Summary of benefits resulting from the waste to energy project								
Item	Description	Objective	Component	No.	Economic benefit			
			Seven permanent jobs related		R35000/month. Nationwide rolout at			
			to the community garden		350 wastewater treatment works with			
	Unskilled		programme	7	digesters can creat 10000 jobs			
			Three permanent technical					
			assistant jobs at ERWAT for					
			basic monitoring and					
Job creation	Semi-skilled		maintenance of systems	3	R15000/month			
					Trained staff will ensure long-term			
					sustainability of the infrastructure and			
			Training of seven technicians		continued development in the			
		Sustainability of the	for the operation and		surrounding areas. This will also be part			
		waste water	maintenance of the		of the overall infrastructure skills			
	Skilled	infrastructure	wastewater treatment works	7	development at local government level			
					A total of 900MWh per annum will be			
Reduction in			Freed energy can be used to		freed from the grid. Potential energy			
electricity usage by	Free energy	Operational	provide additional 750 indigent		savings for the full rollout of the project			
ERWAT	from the grid	efficiency	households with electricity	750 households	is 1500GWh/year			
	Increase in		The CSIR process will increase					
Increase in biogas	biogas	Operational	biogas production from as low		Increase in biogas production for			
production	production	efficiency	as 30% up to 72%	from 30% to 72%	generation of electricity			
			The CSIR process will reduce					
Reduction in	Reduction in	Operational	retention time from 30 to 16	Reduction from 30	Increase in existing sludge handling			
retention time	retention time	efficiency	days	to 16 days	capacity of plant			
			Sludge from 2-stage digestion					
			process results in a significant					
			reduction in obnoxious odours					
		Stabilization of the	and pathogenic bacteria and					
		sludge for safe use	depending on the classification		Depending on its classification, the final			
Stabilization of the	Stabilization	by the surrounding	of the sludge is suitable for		sludge would be safe for productive use			
sludge	of the sludge	communities	various beneficial uses.		by the local communities			

Benefits of the wastewater treatment technology – ERWAT Plant as a pilot

Conclusions

- CSIR will:
 - ✓ Continue discussions with DHS to update 'Red Book' and Human Settlements Atlas;
 - Continue engagements with the DHS, provinces, municipalities, SALGA, MISA, NHBRC, CoGTA, NT and other stakeholders on the appropriate mechanism or model for rolling-out CSIR's low cost housing model;
 - Work with other partners such as Water Affairs, municipalities, MISA, SALGA, CoGTA, NT, DBSA, etc to prepare for the rollout of the waste-to-energy and rural water treatment ('AmaDrum') technologies (SIP 6)
 - Continue exploring, in partnership with relevant departments such NT and DST, innovative financing mechanism for practical and creative R & D based solutions in infrastructure (i.e. water, human settlements, energy, transport, etc.)
- It is crucial to treat sanitation as an integral part of the water value chair

Slide 50